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Abstract

A two-dimensional, semi-infinite analytical solution of the transient temperature and the
thermal stress due to heating from the bending magnet beam missteering in the APS has been
developed. In order to solve the thermal stress analytically, an effective absorption function is
introduced, and the transient temperature can be written as a function of the exponential inte-
grals. At the origin where the peak power is applied, the effective stress is found to be the maxi-
mum and is undergoing simple compression along the longitudinal direction. The result utilizing
finite element method (FEM) applied to the chamber cross section is also presented and agrees
fairly well with the current analytical solution during the early small time scale.



Nomenclature

B Magnet field of the bending magnet
D Temperature diffusivity

E Positron beam energy

G* Green function

I Beam current

K Thermal conductivity

Q Heat generation

T Temperature

To Reference temperature

Y Young's modulus

[0 Displacement potential

a Thermal expansion coefficient

O Effective absorption coefficient

0 Incident angle

u Shear modulus

Vv Poisson ratio

P Airy stress function

P Vertical angle

Yo Vertical inclined angle

p Material density

Oij Stress tensor component

0'ij Deviatoric stress tensor component
Oeff. Effective stress

C Specific heat

I Distance from the source

q Bending magnet beam power

(o) Peak power of the bending magnet
lo Standard deviation

t Time

Cartisian coordinate




1 Introduction

APS (Advanced Photon Source) synchrotron beam orbit missteering is known to be an important
event due to the extreme thermal loading and subsequent high thermal stress built up in the
vacuum chamber. The information obtained during the transient activities directly affects the
design criterion for the beam abort and interlock systems. Because the bending magnet beam
missteering generates a very localized temperature gradient that will result in high thermal stress
in the chamber, thermomechanical analysis of the beam missteering is necessary to obtain the
parametric expressions for the temperature and stress in terms of the beam power and the
associated footprint.

Because the bending magnet radiation has a fan-like geometry in the horizontal direction
and a gaussian-like distribution in the vertical direction, the footprint heating on the chamber
surface spreads out in an extensively wider area along the longitudinal direction than along the
transverse direction, hence, atwo-dimensiona analysis on the transverse plane is reasonably ad-
equate. Since the response time of the beam position monitor (BPM) is on the order of afew
milliseconds, the cooling effect due to remote water convection islimited. In addition, in view
of the localized power input, it is expected that severe thermal and thermomechanical activities
will take place in asmall region; therefore, semi-infinite plane is used for the current analysis. A
nonhomogeneous energy equation is utilized for the transient temperature analysis. Inertia ef-
fects due to the heating are assumed to be negligible; hence, quasi-static thermoelastic plane
strain condition is employed. In our analysis, all the material properties are independent of tem-
perature and time.

2 Bending Magnet Power Distribution
The bending magnet power distribution q is expressed as [4]
4 4 2
q = 5.42‘152E Bl Flyy) = 5.42|52E Bl 1 5/2[1 43 Y2 ]
(1 + yzlpZ)

where isthe vertical angle; y = 1957E; and e, b, i, and | denote positron beam energy,
magnetic field of the bending magnet, the beam current, and the distance from the source,
respectively. The angular function f(yy) can be approximated as gaussian distribution [5]

TRURY
Fivw) = exp [‘E(o.ms) ]
Fig. 1 shows the comparisons of F(yy) using Egs. (1) and (2). Eq. (2) isrecast as
2
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For convenience, coordinate x is the vertical direction, and y is the horizontal direction. Also, in
Eq. (3) the approximationp = x/l has been used. Note that the standard deviation r, of the
bending magnet becomes
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Eq. (1) can berewritten as

2
_ 5.425E4B| _1(1957Ex
9= eXp( 2(0.608 |) )
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If the bending magnet is vertically missteered, then Eq. (5) becomes
5 _ . 2
_ 1(x\“\| _ 5.425EBI sin § 1(1957EXsin Yo
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(6)
where § istheincident angle and v, is the vertical angle. The peak power ¢, and the
corresponding standard deviation r, are, respectively,
qo = DA25EBISNd | _ 0.608l

° |2 » 9 1957 E sin Yo' 7)
If the beam is horizontally missteered, Eq. (5) yields
g = BAZSE®BISnd o _;(1957Ex)2
|2 210.608 | ’
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and
qo = DA425E°Bl snd | _ 0.608
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3 TheTemperatureField

Asshownin Fig. 2, consider atwo-dimensional semi-infinite plane(y>0, -0 <X < «)in
which the surfacey = 0 is assumed to be insulated. A gaussian-type of heat source is ssmulated
for the bending magnet where the peak power islocated at the origin. The heat equation is given

0% o0%)  Q _oT
D(ax2+ay2) Tpc T Gt

where D isthe diffusivity defined as and K/pc, and K, p, and ¢ denote conductivity, density, and
specific heat, respectively. The surface represents the inner surface of the storage ring chamber
and is assumed to be insulated. Thus, the boundary condition reads

T _ -
3y O ony=0. (11)

(10)

From Eq. (2), the power distribution of the bending magnet is expressed as
2
q = do &Xp (—% (r—’;) )

When the bending magnet heats the chamber surface, the heat generation term in Eq. (10) is
rewritten as

(12)



2
Q = ad(y) = Go &P (—% (%) )é(y),

(13)
where d(y) is the deltafunction defined as
1wheny =0,
o(y) = {
0 esewhere. (14)

Utilizing the green function solution [2], we found that the solution satisfies Egs. (10)
and (11), and, with the surface heating formulation (from Eq. (13)), reads
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T-T, = jdt J dx J dy'G* Q = pcfdt J dx J dy 4AnD(t—t")
0o = 0 o = 0
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(15)
where Ty is the reference temperature. After some algebra, Eq. (15) can be written as
t
29, 1 y21 x2 1
T-T, = exp | —25=-2= = |dt’,
0 pc/ﬁroj,/tlrz P ( 2r3Ty 2r3 T2
0 (16)
where
4AD(t-t") 2r2 + 4D(t-t)
1Tz 0 2T 2 ttm
0 0 (17)

Observing the solution in Eq. (16), we see that the coefficients associated with x and y in the
exponential function are different, which will result in complexity while determining the thermal
stress. Therefore, in order to be able to solve for the thermal stress, we assume that the material
along they axisis aso subjected to the same distributed heat as is the material along the surface
(x axis), but an “ effective absorption coefficient” ¢; isintroduced to accommodate the maximum
temperature (in Eq. (16)).1 Therefore, the heat generation term is assumed to be

2 4 2
Q = qggo exp [—%(X :;y )]
0 (18)

1Although Choi [3] also assumed that the absorption function can be expressed
as an exponential function of the depth, the absorption function used here is afictitious one and
requires further verifications.




Replacing Q in Eq. (15) by the expression from Eg. (18), we found

t

Z St 1 G P

T-To = ¢ f‘z exp ( Zr%tz)dt’
0o

wherer2= x2 + y2 Further calculation yields

20001413 r2 r2
T-To = E -E( 5|
°" 4Dpc | N 2rz+4Dt) T\ 2r2 (20

where E, represents exponential integral of integer order n which is defined as[1]

(19)

[ee]

En(2) = I de Re (z) > 0.
1 (21)

It is easy to find that the maximum temperatures in both Egs. (16) and (20) are located at the
origin. Letting x=0andy = 0 and carrying out the integration in Eq. (16), the maximum
temperature is found to be

2
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(22)
Similarly, the maximum temperature in Eq. (20) is
r2
Thmax—To = gHlo% log 4_th + 1.
D pc 2r2 23)
To make the maximum temperature in Eq. (23) identical to that in Eq. (22), o must satisfy
2
ADt _2 4Dt 4Dt) , 4Dt
o (B3) - 2z (1) (4] o500
(24)
4 The StressField
The thermal stress is divided into two parts: (1) the stress field (ojj) due to the temperature
change in the infinite plane, and (2) the extra stress field G; i generated to satisfy the boundary
conditions. To solve the stress gjj, we introduce a displacement potential @, which satisfies
Poisson’s equation [6]
VO = @ = mo(T-To), (25)

where V2 isthe Laplacian operator and my is defined as

oY 1Y for plane strain and,

1-v
m =
° 10‘1 for plane stress,
v (26)




wherea, Y, and v are the thermal expansion, Young's modulus, and Poisson’s ratio, respectively.
The corresponding stress components ojj, can be expressed as

Gy = 2@ - @), 27)

where u represents the shear modulus. Since the temperature distribution in Eg. (20) is only
function of r, substituting Eq. (20) into Eqg. (25) and writing the Laplacian operator in polar
coordinates, we have

19 (,0®) _ 2Mobotirs (2 (2
roar \'or 4D pc 2rZ + 4Dt 2r3

(28)
Direct integrating yields
or ~ appe | T \zz)T T P2lageant) [T 29

where ¢, istheintegrating constant and can be determined as follows. when r — 0O, Ex(r) hasan
order of O(0); hence, the order of the first two terms on the right hand side of Eqg. (29) is O(1/r).
Also, because the derivative d®/dr has the same order of displacements, it hasto be finiteasr —
0, and the only possibility iswhen

o = ~ZDpc (30)

Further integrating in Eq. (29) yields
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where Ei(2) is the exponential integral function and can be written as

n
Z_, z < 0’
nn!

n=1 (32

Ei(z) = yo + log(-z) +

whereasy, is Euler constant = .5772156649.... For convenience, the integrating constant
¢ inEqg. (31) is assumed to be zero.

Substituting Eqg. (31) into Eq. (27) and utilizing the relation [1]
Enei@ = & (Xp(-2)2En(2), n € N, (33)



we finally have
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Note that all the stress components ojj remain finiteasr — 0. From Eq. (34), it is easy to find
that, on the surface'y = 0, the stress component oy satisfies the traction-free boundary condition
but the stress normal to the surface is different from zero :

_ B MoQooitd | 2rZ + 4Dt X2 _x2
Oyy (%,0) = =2 —Z575¢ [ 2 Pz o) T\ 2z ao)”

7z B (?) — 2E, (ﬁ — 4Dt =5 |.
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An extrastress field ﬁij Isintroduced in order to satisfy the traction free boundary condition on
the surface, that is,




An Airy stress function W satisfying the biharmonic equation can be expressed as

v = J %(A + AyB) exp (y) sin (\x)dh,
0
and the stress components oj; satisfy

= _0W = _9W = _ ¥

XX _W' Oyy = X2’ ny—ax—ay,

where A and B are constants and are determined by substituting Eg. (38) into Eg. (36).

The result gives

[ee]

A=B A=2 J Oyy(E, 0) sin (AZ) dE,
0
Substituting Egs. (37) and (39) into Eq.(38) and after some rearrangements, we have

[ee]

Oxx = J A(-1 + yA) exp (-hy) sin (Ax) dh = - + I,

0

Oyy = —J Al + yA) exp (-\y) sin (A\x) dh = - —II,
0

Oxy = f Aexp(=yA) sin (Ax) d\n = I,
0

(36)

(37)

(38)

(39)

(40)



Oyy(y tan (n)-x, O)dn|,

Oyy(y tan (n) + x, O)cos*(n)dn —

Oyy(y tan (n)—x, O)cos?(n)dn| — I.

"n\:l:

tan-1(5) (41)

Theintegrals| and |1 are to be solved by numerical integration. After the stressfield 5”— is
gompl eted, the total stress components are determined by summing up two stress fields ojj and
0j; in Egs. (34) and (40), respectively. On the surfacey = 0, the only non-vanished in-plane
stress component oyy is expressed as

Moot

X,0) = 2
Oxx(X, 0) W pox2

2 2
.| (2r2 + 4Dt) exp (——X ) —2rZ exp (——X ) — 4Dt |[.
[( ° ) 2r2 + 4Dt ° 2r2

5 Finite Element Analysis

(42)

Fig. 3 shows the dimensioning plot of the storage ring chamber cross section in APS. The
storage ring is made of 6063 - T5 aluminum. Several bending magnet beam missteering studies
have been analyzed by using finite element method. One of these was chosen for the
verification. In this missteering case, the bending magnet beam power is assumed heating the
edge of the positron chamber in the curved sections (S2 or $4) by bending magnet Ml or M2.
The chamber cross section is discretized by isoparametric quadrilateral element. The distance
from the source point is approximately 70 inches. As shown in Fig. 4, convection water cooling
is carried out by three water channels. The convection coefficient h = 0.4 W/cm?2 °C. Air cooling
is applied on the outer boundary, whereas the inner chamber surface is assumed to be insulated.
The reference temperature and the initial temperatureis 34 °C. Table 1 lists the parameters
employed in the model. The discretization is constructed by ALGOR code, whereas the
calculation is done by the ANSY Sfinite element package.



6 Resultsand Discussions

From Eq. (18) it is apparent that heat is generated inside the material, but if the maximum
temperature is adjusted by introducing an effective absorption coefficient, the temperature
difference between Eq. (16) and Eq. (20) along x = 0 is expected to have alarger discrepancy.
Fig. 5 illustrates the temperature plot using heat generation formulation (Eg. (20), long dashed
lines) and surface heating formulation (Eg. (16), dashed lines). It is found that, beforet = 1
second, the maximum temperature difference between two formulationsis less than 10 °C,
which reveals that the use of the heat generation model is adequate for the current analysis.

Fig. 6 shows the temperature distributions along the heating surface at different time
frames. The heat-affected zone in the first two time steps (0.001 and 0.01 seconds) is limited to
within 0.1 inch. The small standard deviation r, steepens the temperature gradients within 0.02
inch. Astime increases, the temperature increases monotonically.

It isinteresting to note that from Eq. (42), asr — 0, not only oyy and oy, but also oy var
nishes. The reason being that, in Eq. (40) asy — 0, the additional normal stress component Gyy
approaches —oyy. Because the stress oy, and oy tend to the same limit asx and y approach zero
(Eq. (34)), the total stressoyy = Oxx + Oxx = Oxy - Oyy I — 0 asr—0. Therefore, high compres-

sive normal stressoyy s observed away from the origin instead of at the origin where the maxi-
mum temperature islocated. Fig. 8 shows the three-dimensional plot of the stress component

Oxx-
For plane strain conditions, the off-plane strain components vanishe&jz; =0 (i = X, Y, 2),
and the stress component o, becomes

Oz = V<0xx + 0yy> —aY(T = To). (43)
Aswas described above, because the in-plane stress components are all zero as r — 0, from

Eq. (43), only the off-plane stress o, is different from zero and it yields

lim 0z =—1lim aY (T = T,).
-0 r—0 ( O) (44)

Therefore, we see that the stressfield at the origin behaves as uniaxial compression. Itisalso
worthwhile to mention that the principal planes are along the x and y axis. The effective stress,
defined as

= 35
Ogff, = 2 o IJGI ’ (45)

now is simply
' r—0

r— (46)
at the origin. Where ¢'jj isthe deviatoric stress defined by

, 1
Oij = Oij_§6ij0kk’ (47)

where 6jj isthe Kronecker delta. Dueto the fact that the effective stress cannot be larger
than aY(T-Ty) if the materia issubjected to only thermal loading, we can conclude that the
maximum effective stress takes place at the origin and the magnitude is



) 2I‘2q0(xt 4Dt
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Fig. 7 shows the effective stressog, profile along the heating surface. It isfound that even
though the heat-affected zone at the early stage (0.001 and 0.01 seconds) islessthan 0.1 inch
(Fig. 6), the area of the nonzero effective stress is much wider due to the thermal expansion of
the material. The heated material receives compressive stress while the adjacent unheated
material is subjected to tensile stress.

Fig. 9 illustrates the transient temperature at the origin using both the semi-infinite ana-
lytical solution and the finite element analysis. The two approaches agree fairly well with each
other beforet = 0.016 second. Although in the finite element model, water convection is sup-
plied on three channels and steady state will be reached later, the associated steady-state temper-
ature is found to be higher than that found by the semi-infinite model within areasonable time
interval. The reason being that in the semi-infinite model, the material absorbs much more heat
than does finite material. Theoretically, even though the temperature of the semi-infinite model
will diverge as the heating time tends to infinite (Eq. 22, for example), the relation between the
heating time t and the temperature are in log scale, whereas the temperature in the finite domain
with cooling boundary conditionsis on the order of exp(-A4t2) , (where A is the associated eigen-
value depending on the boundary conditions), which indicates that the time derivative of the
temperature in the semi-infinite domain is much smaller than that in finite domain.

(48)

The comparison of the effective stress ogs;, at the origin using the semi-infinite analytical
solution and the finite element analysisis shown in Fig. 10. It isfound that by using the semi-in-
finite solution the effective stress is higher than that found using the finite element model. This
is because the bending magnet heating takes places near the wedge apex whereit isless
constrained than on the semi-infinite half plane.



Tablel: Material Properties and Parameters

B 0.6 [T]
E 7.0 [GeV]
| 300 [MA]
K 167.4 [WIM°K]
T 34[°C]
1.1x 107 [Ps]
a 2.25x 10°° [cm/cm®K]
5 46 [MR]
Vo 0.5235 [R]
% 0.33
P 2.7 [glcm3]
C 984 [JKg°C]
I 70.87 [inches]
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Figure8 Three-Dimensional Plot of the Normal Stressoyy when t = 0.1 second
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Figure9 Transient Temperatureat theorigin. Finite Element Analysis (solid circle) vs.
Semi-Infinite Plane Analysis (solid line).
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Figure10 Quasi-Static Effective Stress $g¢. at the origin, Finite Element Analysis
(solid circle) vs. Semi-Infinite Plane Analysis (solid line).
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